

Abstracts

A neural network model for CAD and optimization of microwave filters

P. Burrascano, M. Dionigi, C. Fancelli and M. Mongiardo. "A neural network model for CAD and optimization of microwave filters." 1998 MTT-S International Microwave Symposium Digest 98.1 (1998 Vol. I [MWSYM]): 13-16.

Improvement of the performance/cost ratio for modern microwave filters requires manufacturing-oriented design, hence accommodating full-wave tolerance analyses and yield optimization which are very computer-insensitive. The use of neural networks for reducing the design effort of microwave filters, although still in its infancy, seems to provide a rather promising option. Once properly selected and trained, neural networks can approximate the filter response at a very modest fraction of the computer resources used by the full-wave rigorous model, hence enabling systematic application of manufacturing-oriented design. In this paper we present the solution of the major important choices related to the effective selection of a neural network suitable for approximating the behavior of a typical microwave filter. For illustration we consider the example of a standard four-pole E-plane metal-insert filter operating in X-band.

[Return to main document.](#)